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     Abstract 
In the present study, an attempt has been made to investigate the effect of 
machining parameters (cutting speed, feed rate, depth of cut and tool nose 
radius) on material removal rate and surface roughness in finish hard turning of 
H13 tool steel using carbide tool. The machining experiments were conducted 
based on response surface methodology (RSM) using face centered central 
composite design. A comprehensive analysis of variance (ANOVA) was used 
to fully identify the most influential parameters, and the adequacy of both fitted 
second order regression models were checked. 3D response surfaces and 2D 

contour plots were analyzed to completely observe the impact of combinatory 
different important interactive factors on the machinability behaviour under 
different turning conditions. The MRR and SR increase by increasing the 
cutting speed, feed rate and depth of cut. The depth of cut and feed rate are the 
most influential factors for increasing the MRR and SR respectively. 
Mathematical models for MRR and SR were developed by using Design 
Expert-9 software. Finally, a multi-objective optimization technique based on 
the use of desirability function (DF) technique was then applied to find optimal 

combinations of input machining parameters capable of producing the highest 
possible amount of MRR and lowest amounts of SR within process domain. 
The obtained predicted optimal results were then verified experimentally to 
compute confirmation errors. The values of relative validation errors, all being 
found to be quite satisfactory, 5.29% for MRR and 8.1% for SR, proves the 
efficacy and reliability of suggested approach. 

1. Introduction 

The economy of any country mainly depends on growth 

of its manufacturing industries. Hence, enhancement in 
manufacturing technology, especially machining of 
hardened steel has been revolutionized many branches of 
industry such as automotive, die and mould sectors. The 
application of hard turning has been proved extremely 
advantageous in producing bearings, gears, cams, shafts, 
axels, and other mechanical components since the early 
1980s [4]. In turning operation, material removal rate and 

the quality of the surface finish are important requirement 
for many turned workpieces. Material removal process 
initiates structural changes to the surface of a workpiece. 
This metallurgical transformation on the surface occurs due 
to intense thermal energy produced during turning which 
enhance the chemical interaction of surface with 
environment. The characteristics of worked surface may 
exhibit a vast difference compared to that of the bulk of the 

material. Thus, the selection of optimum machining 
parameters is very important in controlling quality [1, 2].  

2. Review of previous work 

In the current scenario, the most effective machining 

approach is determined by investigating the different 
parameters affecting turning process and seeking different 
ways of obtaining the optimal machining condition and 
performance. M. Thomas and Y. Beauchamp used full 
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factorial experimental design in which 288 experiment have 

been conducted on turning process, which investigated the 
optimum cutting parameters (cutting speed, feed rate, depth 
of cut and nose radius) on cutting force, tool vibration and 
surface roughness. The results investigated through 
ANOVA revealed that steady cutting forces depend mainly 
on depth of cut and feed rate. High cutting speed, a low feed 
rate, a large tool nose radius, and a low depth of cut are used 
for reducing vibration and increasing tool damping while 
low cutting speed helps to reduce the surface roughness by 

reducing the effect of built-up edge formation [1]. Meng Liu 
et al. experimentally investigated the effect of tool nose 
radius and tool wear on residual stress distribution in hard 
turning of bearing steel JIS SUJ2. In this study, three types 
of CBN tools with different nose radius 0.4, 0.8 and 1.2 mm 
were used. The results show that remarkable residual stress 
distribution affected by the tool nose radius [3]. Grzesik 
have used cutting tool of material mixed ceramics 

(aluminium oxide plus TiC or TiCN) for machining of 
hardened steel (HRC 50-65) under dry turning condition 
and moderate cutting speed ranging from 90 to120 m.min. 
This study revealed an extensive characterization of the 
surface roughness produced during hard turning (HT) 
operations performed with conventional and wiper ceramic 
tools at variable feed rate and its changes originated from 
tool wear [4]. G. Poulachon et al. performed hard turning 

operation on high strength alloy steel (45 ˂ HRC ˂ 65) 
using polycrystalline cubic boron nitride (PCBN) cutting 
tool in order to reach surface roughness close to those 
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obtained in grinding operation. This study observed that 
flank wear of cutting tool has a large impact on the quality 
of machined parts namely surface finish, geometry accuracy 
and surface integrity [5]. D.I. Lalwani et al. has been 
investigated the effect of machining parameters namely 

cutting speed, feed rate and depth of cut on cutting force 
and surface roughness in hard turning of MDN 250 using 
coated ceramic tool using response surface methodology 
(RSM) experimental approach. The results indicate that 
cutting forces and surface roughness do not vary much with 
cutting speed in the range of 55–93 m/min [6]. H. 
Bouchelaghem et al. has been investigated the wear test on 
the CBN tool during hard turning of AISI D3 (60 HRC). 

The quality of surface finish, cutting forces and temperature 
has been studied according to the cutting parameters 
(cutting speed, feed, depth of cut) and tool wear. The feed 
rate is the most affecting factor on the roughness values. 
The proposed statistical models are based on the response 
surface methodology correlating the cutting parameters 
together with roughness, cutting forces and tool life [7]. J.A. 
Arsecularatne et al. investigated the machining through dry 

turning of AISI D2 steel of hardness 62 HRC with PCBN 
tools. The results show that the most feasible feeds and 
speeds fall in the ranges 0.08–0.20 mm/rev and 70–120 
m/min, respectively while the highest feed used resulted in 
the highest volume of material removal, lower feeds 
resulted in higher tool life values [8]. Li Qian, Mohammad 
Robiul Hossan have been studied the finish hard-turning 
operation on of AISI 52100 bearing steel, AISI H13 hot 

work tool steel, AISI D2 cold work steel, and AISI 4340 
low alloy steel as a function of cutting speed, feed, cutter 
geometry, and workpiece hardness. Cubic boron nitride 
(CBN) or polycrystalline (PCBN) inserts are used as cutting 
tool materials for high speed machining. Among process 
parameters, cutter geometry and workpiece hardness, the 
feed has the most significant effect on cutting and feed 
forces while Cutting force and feed force increase with 
increasing feed, tool edge radius, negative rake angle, and 

workpiece hardness [9]. Tongchao Ding et al. investigated 
the effects of machining parameters on cutting forces and 
surface roughness in hard milling of AISI H13 steel with 
coated carbide tools. Taguchi‟s four-level orthogonal array 
was used for the experimentation with four machining 
parameters namely cutting speed, feed, radial depth of cut 
and axial depth of cut. Surface roughness under optimal 
machining parameters is less than 0.25 μm, which proves 

that finish hard milling is an alternative machining route to 
grinding process in die and mold industry [10]. Tug˘rul O  ̈
zel and Yig˘it Karpat have been experimentally investigated 
the effects of cutting edge geometry, workpiece hardness, 
feed rate and cutting speed on surface roughness and tool 
wear in the finish dry hard turning of AISI H13 steel using 
Cubic Boron Nitride (CBN) tools. Neural network model 
and regression models were developed to predict surface 

roughness and tool flank wear over the machining time for 
variety of cutting conditions in finish hard turning. The 
results show that better surface roughness but slightly faster 
tool wear is obtained by decreasing feed rate and increasing 
cutting speed [11]. Reginaldo T. Coelho et al. showed the 
results of tool wear, cutting force and surface finish 
obtained from the turning operation on hardened AISI 4340 
using PCBN coated and uncoated edges. The experiments 

were conducted with three different coatings on tool for 
finishing conditions: TiAlN, TiAlN-nanocoating and AlCrN 
and result showed that TiAlN-nanocoating performed better 
in terms of tool wear and surface roughness [12]. D. Philip 
Selvaraj et al. carried out dry turning operation on two 

different grades of nitrogen alloyed duplex stainless steel 
with TiC and TiCN coated carbide cutting tool inserts. The 
experiments were conducted at three different cutting 
speeds (80, 100 and 120 m/min) with three different feed 
rates (0.04, 0.08 and 0.12 mm/rev) and a constant depth of 
cut (0.5 mm). The machining parameters are optimized 
using signal to noise ratio and the analysis of variance. The 
results showed that the feed rate is the more significant 

parameter influencing the surface roughness and cutting 
force. The cutting speed was observed as the more 
significant parameter influencing the tool wear [13]. 

The literature review above indicates that most of the 
studies have been concentrated on AISI H-13 tool steel and 
other types of steels. In recent years, along with other types 
of steels, AISI H-13 tool steel has also emerged as an 
important material for industrial applications. Despite 

extensive research on dry turning process, determining the 
desirable operating conditions during dry turning of H-13 
tool steel, in industrial setting, still relies on the skill of the 
operators and trial-and-error methods. So, the determination 
of the parametric settings that can simultaneously optimize 
multiple responses of dry turning of this material is an 
important issue to the engineers. Therefore, it is imperative 
to develop a suitable technology guideline for optimum 

machining conditions for dry turning of AISI H-13 tool 
steel. In addition to this, researchers have usually preferred 
to apply neural network and GRA-based approaches for 
optimizing the multiple responses of turning process 
although there exist some other easily comprehendible and 
computationally simple approaches for multi-response 
optimization. So, the aim of the present work is to obtain the 
optimum machining conditions for dry turning operation of 
AISI H-13 tool steel using coated ceramic tool for 

maximum material removal rate and maximum surface 
finish based on the use of desirability function (DF) 
approach. Experiments, based on central composite design 
of response surface methodology (RSM), were carried out 
to study the effect of various parameters, viz. cutting speed, 
feed rate, depth of cut and tool nose radius, on material 
removal rate and surface finish. From the experimental data, 
multiple regression models for the MRR and surface finish 

are obtained in the present work. 

3. Experimentation 

3.1 Materials, Machine Tool and Measurement 

The distinguishing feature of this steel is superior 
toughness compared to other hardened steels. This steel 
typically has very high vanadium, nickel, carbon, 
manganese contents which give it superior mechanical 
properties such as high wear resistance, high machinability, 
high grindability, and very low distortion during heat 

treatment, high resistance of decarburization etc. Table 1 
indicates the chemical composition of H13 steel. Typical 
applications of H13 tool steel are to make aluminium 
Extrusion Dies, Die Casting Dies, Heavy Duty Compression 
Tools, Forming Punches, Hot Forging Dies, Shear Blades, 
Plastic Mold Dies, and Bolt Dies. Bars of T6 H13 steel, 22 
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mm in diameter and 250mm in length were used in the 
study. The hardness was obtained as 55.0±0.5 HRC. The 
chemical compositions and mechanical properties of H13 
steel as received are given in Tables 1 and 2, respectively.  
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Fig 1 Photographic view of CNC Lathe machine  
Table: 1. Chemical Composition of H13 Tool Steel 

Element C Si Mn P S Ni Cr Mo Cu V Al Ti W Fe 

Compositio

n 

0.37
0 

0.90
2 

0.30
6 

0.0
2 

0.0
1 

0.22
1 

5.2
6 

1.2
5 

0.09
1 

0.80
5 

0.00
7 

0.00
3 

0.05
4 

Ba
l 

Table: 2. Mechanical Properties of H13 Tool Steel 

Tensile strength, ultimate  at 20°C 1545 MPa 

Tensile strength, yield at 20°C 1328 MPa 

Reduction of area  at 20°C 50.00% 

Modulus of elasticity at 20°C 215 GPa 

Poisson's ratio 0.28 

Carbide inserts chamfered (25° ×0.1mm) 

TNMA160408S01525 were used in the experimental work 
mounted on PSBNR2525K12 tool holder. The tool angles 
are as follows: back rake angle = −5°, side rake angle= −5°, 
principal cutting edge angle= 92°, end cutting edge angle = 
27°. Rigid, high speed precision CNC Turning Center 
STALLION 100 HD/100 SU (HMT, India) lathe equipped 
with speed range 100-3000 rpm was used for 
experimentation. For improving the machining 

performance, workpiece material was placed between chuck 
(three jaws) and tailstock and the tool overhang was kept at 
the minimum possible value of 20 mm. The two most 
crucial performance measures in dry turning are metal 
removal rate and workpiece surface roughness. The material 
removal rate (g/min) was calculated by weight difference of 
the specimen before and after machining using high-
precision balance. The surface roughness was measured 

with Talysurf-6 at three different locations on the workpiece 
after machining and the average value has been taken in the 
present study [15]. 

3.2 Response Surface Methodology 

RSM is a collection of mathematical and statistical 
techniques that are useful for the modeling and analysis of 
problems in which a response of interest is influenced by 
several variables and the goal is to optimize this response 
(Montgomery, 1997). RSM also computes relationships 
among one or more measured responses and the essential 

input factors. RSM was applied to model and optimize the 
dry turning process. The Design Expert 9 software was used 
to analyze [14] and develop the regression model for the 
responses. Face-centered central composite design (CCD) 
has been employed to conduct the experiments. It is a sort 
of second order design set which employ three levels for 
each design parameter and can efficiently handle linear, 
quadratic as well as interaction terms in process modelling. 

In order to observe the effects of the turning factors, a 
second-order polynomial response surface mathematical 

model has been considered to evaluate the parametric 

effects on MRR and surface roughness machining criteria: 
4 4 4 4

2

0

1 1 1 1

( ) i i i i ij i j

i i i j i

y MRR X X X X
    

              (1) 

4 4 4 4
2

0

1 1 1 1

( ) i i i i ij i j

i i i j i

y SR X X X X
    

           
(2) 

Where X1, X2, X3 denote the input parameters cutting 
speed, feed rate, radial depth  of cut and tool nose radius; 
y(MRR) and y(SR) indicate the response variable namely 
material removal rate and surface roughness respectively. 

The terms α, β are the second-order regression coefficients. 
The method of least squares was employed to determine the 
coefficients of the polynomials. The second term under the 
summation sign of this polynomial equation is attributable 
to linear effect; whereas the third term corresponds to the 
higher-order effect; the fourth term of the equation includes 
the interactive effects of the machining parameters [14]. 

3.3 Experimental Plan Procedure 

The levels of machining parameters namely cutting 
speed, feed rate, depth of cut and tool nose radius were 

selected with the help of machine manual, machine expert 
and performing the pilot test on a CNC Lathe machine. The 
rest of the parameters are adjusted automatically by the 
machine itself. A pilot experimentation using one-factor-at-
a-time approach was conducted to identify feasible ranges 
of machining parameters. On the basis of pilot 
experimentation, the ranges and subsequently the levels of 
the machining parameters were selected as shown in Table 3 

[16]. The levels of machining parameters namely cutting 
speed, feed rate, depth of cut and tool nose radius were 
selected with the help of machine manual, machine expert 
and performing the pilot test on a CNC Lathe machine. The 
rest of the parameters are adjusted automatically by the 
machine itself. A pilot experimentation using one-factor-at-
a-time approach was conducted to identify feasible ranges 
of machining parameters. On the basis of pilot 
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experimentation, the ranges and subsequently the levels of 
the machining parameters were chosen (in Table 1) [16]. 
Twenty one experiments are performed on the bases of 
standard table obtained from the help of Design-Expert 9 
software.  Table 4 shows complete design matrix with 

responses namely material removal rate and surface finish. 
The experiments were conducted randomly as shown in 
design matrix („std‟ column in Table 4). 

Table: 3. Machining Parameters and Their Levels 

Factors Unit 
Low 

level (1) 

Centre 

level (2) 

High 

level (3) 

Cutting 
speed 

Rpm 800 1900 3000 

Feed rate mm/min 0.05 0.75 0.1 

 Depth of 
cut 

Mm 0.25 0.625 1 

Tool nose 
radius 

Mm 0.4 0.8 1.2 

4. Results and Discussion 

The first step in data analysis of the present study is to 

summarize the test results for each experiment performed 
by the using response surface methodology. Table 4 shows 
all values of material removal rate and surface roughness 
obtained through the experiment. The material removal rate 
and surface roughness was obtained in the range of 0.1 
gm/sec to 0.49 gm/sec and 0.28 µm to 0.72 µm, 
respectively.  

Table: 4. Design Matrix with Responses 

  

Facto

r 1 

Factor 

2 

Facto

r 3 

Factor 

4 

Respons

e 1 

Respons

e 2 

St

d 

Ru

n 

A: 

Speed 
B: Feed 

C: 

Depth 

of cut 

D: 

Nose 

Radiu

s 

Mean 

MRR 

Mean 

SR 

  
(rpm) 

(m/min

) 
(mm) (mm) (gm/sec) (mm) 

 18 1 1900 0.075 0.625 0.8 0.3 0.46 

2 2 3000 0.1 0.25 0.4 0.45 0.7 

15 3 1900 0.075 0.625 0.4 0.34 0.41 

14 4 1900 0.075 1 0.8 0.31 0.48 

12 5 1900 0.1 0.625 0.8 0.37 0.61 

5 6 3000 0.05 0.25 1.2 0.13 0.36 

9 7 800 0.075 0.625 0.8 0.102 0.3 

6 8 800 0.05 1 0.4 0.32 0.35 

7 9 800 0.1 1 1.2 0.18 0.43 

19 10 1900 0.075 0.625 0.8 0.29 0.4 

11 11 1900 0.05 0.625 0.8 0.167 0.31 

3 12 3000 0.05 1 1.2 0.36 0.4 

20 13 1900 0.075 0.625 0.8 0.26 0.42 

10 14 3000 0.075 0.625 0.8 0.38 0.59 

13 15 1900 0.075 0.25 0.8 0.18 0.43 

4 16 800 0.1 0.25 1.2 0.13 0.38 

16 17 1900 0.075 0.625 1.2 0.36 0.36 

8 18 800 0.05 0.25 0.4 0.12 0.28 

21 19 1900 0.075 0.625 0.8 0.28 0.45 

1 20 3000 0.1 1 0.4 0.49 0.72 

17 21 1900 0.075 0.625 0.8 0.27 0.43 

Fig 2 Variation of MRR with speed, feed, depth of cut and tool nose radius  

Fig 3 Variation of SR with speed, feed, depth of cut and tool nose  

Fig: 4. Fitted Response Surface and Contour Plot for MRR 
Model 
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Fig 5 Fitted response surface and Contour plot for SR model  
Fig: 5. Fitted Response Surface and Contour Plot for SR 

Model 

Fig. 2 shows the variation of MRR with cutting 
parameters. It can be seen that, MRR continuously increases 
with increasing the values of cutting speed, feed rate and 
depth of cut. 

Fig. 3 shows the 3 D fitted response surfaces and 

contour plots for MRR. Contour plot of cutting speed v/s 
feed indicates that at constant value of 0.625 mm depth of 
cut and 0.8 mm tool nose radius, MRR increases with 
simultaneously increasing the values of cutting speed and 
feed rate. Maximum value of MRR in contour plot is 
predicted 0.5 gm/sec at 3000 rpm cutting speed and 0.1 feed 
rate, seen by red colour. Contour plot of feed and depth of 
cut revealed that at fixed values of 1900 rpm and 0.8 mm 

tool nose radius, MRR increases with continuously 
increasing the values of feed and depth of cut. Maximum 
value of MRR in contour plot is predicted 0.369 gm/sec at 
maximum values of feed and depth of cut. Contour plot of 
speed and nose radius at fixed vales of feed (0.075 mm) and 
depth of cut (0.625 mm) indicates curvilinear nature of 
MMR. Higher value of MRR (0.468 gm/sec) is achieved at 
the upper right region of contour plot area indicated by red 
colour where cutting speed and nose radius is at its 

maximum value. Contour plot between feed and nose 
radius, when speed 1900 rpm and depth of cut 0.625 mm are 
constant , also indicates quadratic nature curve of MMR. 
Higher value of MRR (0.46 gm/sec) is achieved at the upper 
right region of contour plot area indicated by red colour 
where feed and nose radius is at its maximum value. The 
response graphs (Fig 2 and Fig 3) suggest that the factors at 

levels A3, B3, C3 and D2 are the best levels that give the 
maximum MRR. Similarly, the factors at levels A1, B1, 
C1and D3 are the best levels that give minimum surface 
roughness. 

Fig. 3 shows the variation of SR with cutting 

parameters. It can be seen that, SR continuously increases 
with increasing the values of cutting speed, feed rate and 
depth of cut. Fig.3 indicates that the maximum slop of the 
curve SR v/s feed rate, hence, increment of surface 
roughness mainly depends on the feed rate. SR decreases 
with increasing the tool nose radius. 

Fig. 5 shows the 3 D fitted response surfaces and 
contour plots for SR. Contour plot of cutting speed v/s nose 

radius indicates that at constant value of 0.075 mm feed and 
0.625 mm depth of cut, SR decreases  with simultaneously 
decreasing the values of cutting speed and tool nose radius. 
Minimum value of SR in the contour plot is predicted 
0.25µm at the upper left region of contour plot area 
indicated by blue colour where speed is at its minimum 
value while tool nose radius is at its maximum value. 
Contour plot of feed v/s nose radius indicates that at 

constant value of 1900 rpm speed and 0.625 mm depth of 
cut, SR decreases with simultaneously decreasing the values 
of feed and tool nose radius. Contour plots of speed v/s nose 
radius and feed v/s nose radius indicate quadratic nature 
curve of SR. 

Analysis of variance (ANOVA) is a statistically based 
objective decision-making tool for detecting any differences 
in average performance of groups of items tested (Ross, 

1988). ANOVA is performed to identify the process 
parameters of wire-EDM that significantly affect the 
multiple performance characteristics. An ANOVA table 
consists of sums of squares, corresponding degree of 
freedom, the F-ratio corresponding to the ratios of two mean 
squares, and the contribution proportions from each of the 
control factors [16]. The experimental results were analyzed 
in Design Expert-9 software. The results of experiments in 
the form of ANOVA are present in table 5. An ANOVA 

summary table is commonly used to summarize the test of 
the regression model, test of the significance factors and 
their interaction and lack-of-fit test. If the value of „Prob > 
F‟ in ANOVA table is less than 0.05 then the model, the 
factors, interaction of factors are said to be significant [7]. 
 

Table 5- ANOVA (partial sum of square) for material removal rate 

Source Sum of Squares d.f. Mean Square F value 
P value 

Prob>F 
Remark 

Model 0.24 14 0.017 103.16 < 0.0001 significant 

A-Speed 0.039 1 0.039 228.13 < 0.0001  

B-Feed 0.021 1 0.021 121.64 < 0.0001  

C-Depth of cut 0.042 1 0.042 249.43 < 0.0001  

D-Nose Radius 2.000E-004 1 2.000E-004 1.18 0.3189  

AB 0.011 1 0.011 64.29 0.0002  

AC 5.000E-005 1 5.000E-005 0.30 0.6065  

AD 6.052E-003 1 6.052E-003 35.73 0.0010  
BC 0.014 1 0.014 85.31 < 0.0001  

BD 4.666E-003 1 4.666E-003 27.54 0.0019  

CD 2.000E-004 1 2.000E-004 1.18 0.3189  

A2 3.449E-003 1 3.449E-003 20.36 0.0040  

B2 2.188E-004 1 2.188E-004 1.29 0.2991  

C2 2.739E-003 1 2.739E-003 16.17 0.0069  

D2 0.013 1 0.013 78.66 0.0001  

Residual 1.016E-003 6 1.694E-004    

Lack of Fit 1.631E-005 2 8.153E-006 0.033 0.9682 not significant 

Pure Error 1.000E-003 4 2.500E-004    

Cor Total 0.25 20     
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Table 5 shows that the model is significant for MRR 
and cutting speed (A), feed rate (B) depth of cut (C), AB, 
AD, BC, BD, A2, C2, D2 are only the significant factors 
(terms). All other terms are insignificant. By selecting the 
significant terms, the resulting ANOVA table for reduced 

MRR model is shown in Table 6. Table 7 shows that the 
model is significant for SR and cutting speed (A), feed rate 
(B) depth of cut (C), AD, BD, D2 are only the significant 
factors (terms). All other terms are insignificant. By 
selecting the significant terms, the resulting ANOVA table 
for reduced SR model is shown in Table 8. The lack-of-fit is 
insignificant for both MRR and SR models thereby indicate 
that the models fit well with the experimental data. Depth of 

cut is the most dominant factor to MRR because of having 
highest F value (256.04) and feed rate has little influence on 
MRR of tool steel. Feed rate is the most dominant factor to 
SR because of having highest F value (42.81) and depth of 
cut has little influence on SR. 

The various R2 statistics (i.e. R2, adjusted R2 ( ) and 
predicted R2 ( ) of MRR and SR are given in Tables 6 and 
8. The value of R2 = 0.9940 for MRR indicates that 99.40% 

of the total variations are explained by the model. The 
adjusted R2 is a statistic that is adjusted for the “size” of the 
model; that is, the number of factors (terms). The value of 
the   = 0.9866 indicates that 98.66% of the total variability 
is explained by the model after considering the significant 
factors.    = 0.9704 is in good agreement with the    and 
shows that the model would be expected to explain 97.04% 
of the variability in new data (Montgomery, 2001). „C.V.‟ 

stands for the coefficient of variation of the model and it is 
the error expressed as a percentage of the mean 
((S.D./Mean)×100). Lower value of the coefficient of 
variation (C.V. = 4.66 %) indicates improved precision and 
reliability of the conducted experiments.  

The value of R2 = 0.9530 for SR indicates that 95.30% 
of the total variations are explained by the model. The value 
of the   = 0.9277 indicates that 92.77% of the total 
variability is explained by the SR model after considering 

the significant factors.    = 0.8930 is in good agreement with 
and shows that the model would be expected to explain 
89.30% of the variability in new data. Lower value of the 
coefficient of variation (C.V. = 7.34 %) indicates improved 
precision and reliability of the conducted experiments. The 
surface micrograph after machining obtained through 
scanning electron microscopy (SEM) for maximum MRR 
and minimum SR are shown in Figures 6 and 7.  

In any machining process, a mathematical model has to 
be developed, relating the machining output to the machined 
parameters and used for prediction, process control or 
optimization. In order to evaluate the effect of cutting 
parameters of turning process in terms of cutting 
performance such as surface finish of the machined 
workpiece and the amount of material removed, Design 
Expert-9 software was applied to model the turning process. 

Based on the analysis, the optimal parameters and their 
interaction effects are selected and the mathematical 
equations are conformed for each performance 
characteristic to suitable coefficients. These coefficients are 
called model constant [15]. 

The mathematical model equations for MRR and SR 
can be written here in the following form. 
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2 2 2

2

0.28 0.14 0.10 0.065 0.010 0.083 0.061

            0.042 0.054 0.039 0.035 0.070                                     (3)

0.44 0.15 0.15 0.023 0.053 0.045 0.052 0.0046  

MRR A B C D AB AD

BC BD A C D

SR A B C D AD BD D

      

    

               (4)

 
Fig: 6. SEM Micrograph of Turned Surface Obtained by std 

Experiment No 1, Shows Maximum MRR 

 
Fig: 7 SEM Micrograph of Turned Surface Obtained by std 

Experiment No 8, Shows Minimum SR 

5. Multi-Objective Optimization Turning 

Parameters Based on Desirability 

Function 

Metal removal rate is an indicator for productivity 
while surface finish accounts for process economics, 

precision, and work quality. In turning process, it is much 
desired to determine the optimal machining parameters for 
best machining performance. The performance indicators, 
viz. MRR, SR are conflicting in nature as it is always 
desirable to have higher MRR with a lower value of surface 
roughness at the same time. Due to the presence of a large 
number of process variables and mutual interactions, the 
selection of optimum machining parameter combinations to 

obtain higher MRR and smaller SR is a challenging task. 
Here, an attempt is made to develop a strategy based on the 
concept of desirability function for predicting the optimum 
machining parameter settings generating maximum MRR 
with minimum SR all at once. 

The mathematical formulation of the present 
optimization problem can be stated as follow: 

1

2

3

4

Max: F1 (x) = MRR

Min: F2 (x) = SR

Subject to: 800  x  3000

                 0.05  x  0.1

                 0.25  x  1

                  0.4  x 1.2

 

 

 

   
Where, x1, x2, x3, and x4 represent the process input 

parameters cutting speed, feed rate, depth of cut and tool 
nose radius, respectively. It is a fourvariable two-objective 
optimization statement, each of which has been defined by 
respective second order regression equations: 

0 1id   

If the response yi is at its goal or target, then di = 1 (the 
most desirable case), and if the response is outside an 
acceptable region, di = 0 (the least desirable case). There is 
also a positive number, weight factor (r), associated with the 

desirability function of each response defining its shape. If 
the weight is chosen to be less than 1, then the sensitivity of 
the desirability function is low with respect to the optimal or 
target value sought for. In other words, if the search 
algorithm finds a point which is somehow far from the 
desired optimum or target value, then the decrease in 
desirability function value will be small in comparison with 
its maximum amount (unity). Choosing a weight factor 

higher than one, has the reverse effect, and setting it to one, 
provides a balanced or medium sensitivity with the shape of 
desirability being linear. The individual desirability 
functions are defined according to the goal of optimization 
that is maximization and minimization, respectively [17]. 

Table: 8. Constraints and Criteria of Input Parameters and 
Responses 

  

Lowe

r 

Uppe

r 
Lower Upper 

 

Name Goal Limit Limit 
Weigh

t 

Weigh

t 

Importanc

e 

A:Spee
d 

is in 
range 

800 3000 1 1 3 

B:Feed 
is in 
range 

0.05 0.1 1 1 3 

C:Dept
h of cut 

is in 
range 

0.25 1 1 1 3 

D:Nose 
Radius 

is in 
range 

0.4 1.2 1 1 3 

MRR 
maximiz

e 
0.102 0.49 1 1 3 

SR minimize 0.28 0.72 1 1 3 

Table 8 summarizes the key parameters set to find 
global optimum settings including constraints of input 
variables and that of responses‟ requirements while Table 9 
sorts the first ten optimum settings obtained, in descending 
order of composite desirability (D). The closer the D to 1 
the more favorable are the turning conditions satisfying 

problem requirements. 
Table: 9. Iterative Determination of Optimum Conditions 



 Volume 3, Issue 2 (2015) 488-496 ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  495 
 IJARI 

 
Note: The row in italic is selected as the best compromise 
solution 

6. Confirmation Experiment 

Conducting confirmation experiment is the crucial, 
final, and indispensable part of every optimization attempt. 
Its aim, after selecting the optimal parameters, is to predict 
and verify the improvement of the performance 
characteristics with the selected optimal machining 
parameters, i.e. to verify the optimum condition suggested 
by the matrix experiment estimating how close the 

respective predictions are with the real ones. Table 10 
summarizes the optimization results along with 
experimentally obtained responses and their percentage 
relative verification errors. As is clear, the amounts of errors 
are all found to be satisfactory in point of engineering 
applications. Figure 8 shows the SEM micrograph obtained 
from the confirmation experiment (solution number 1 in 
Table 9) in which optimal machining parameters are chosen 
during the turning. 

Table: 10. Multi-Response Optimal Points and 
Experimental Validation 

Optimum input 
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(
m
m
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) 
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13 

0.0
6 
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0.3
58 

0.34 0.3
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0.37 5.
29 

8.
1 

 
Fig: 8. SEM Micrograph of Turned Surface Obtained from 

Confirmation Experiment 

7. Conclusions 

This paper presents the findings of an experimental 
investigation of the effect of cutting speed, feed rate, depth 
of cut and nose radius on material removal rate and surface 
roughness in hard turning of H13 tool steel using coated 
ceramic tool and following conclusions are drawn. 
1. Quadratic model is fitted for material removal rate and 

surface roughness. 
2. Tool nose radius has no significant effect on material 

removal rate. 
3. MRR model: the depth of cut is most significant factor 

whereas cutting speed and feed rate have a secondary 
and tertiary contribution in the model. 

4. SR model: the feed is most significant factor whereas 
cutting speed and nose radius have a secondary and 

tertiary contribution in the model. 
5. 3-D response surfaces and contour plots are used for 

selecting the cutting parameters for providing the given 
desired material removal rate and surface roughness. 

6. Percentage error in the experimental and predicted 
results obtained for MMR and SR is 5.29% and 8.81% 
which is acceptable for MRR and SR model. Hence, 
desirability function approach is an appropriate multi-

objective optimization technique to determine optimal 
cutting parameters. 

References 

[1] M. Thomas, Y. Beauchamp, Statistical investigation of 
modal parameters of cutting tools in dry turning, 
International Journal of Machine Tools & Manufacture 
43, 2003, 1093–1106 

[2] S. S. Bosheh, P. T. Mativenga, White layer formation in 
hard turning of H13 tool steel at high cutting speeds  
 

 
using CBN tooling, International Journal of Machine 

Tools & Manufacture, 46, 2006, 225–233 
[3] M. Liu, Jun-ichiro Takagi, A. Tsukuda, Effect of tool 

nose radius and tool wear on residual stress distribution 
in hard turning of bearing steel, Journal of Materials 
Processing Technology, 150, 2004, 234–241 



 Volume 3, Issue 2 (2015) 488-496 ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  496 
 IJARI 

[4] W. Grzesik, Influence of tool wear on surface roughness 
in hard turning using differently shaped ceramic tools, 
Wear 265, 2008, 327–335 

[5] G. Poulachon, A. Moisan, I.S. Jawahir, Tool-wear 
mechanisms in hard turning with polycrystalline cubic 

boron nitride tools, Wear 250, 2001, 576–586 
[6] D. I. Lalwani, N. K. Mehta, P. K. Jain, Experimental 

investigations of cutting parameters influence on cutting 
forces and surface roughness in finish hard turning of 
MDN250 steel, journal of materials processing 
technology, 206, 2008, 167–179 

[7] H. Bouchelaghem, M. A. Yallese, T. Mabrouki, A. 
Amirat, J. F. Rigal, Experimental investigationa and 

performance analysis of CBN insert in hard turning of 
cold work tool steel (D3), Machining Science and 
Technology, 14, 2010, 471-501 

[8] J. A. Arsecularatne, L. C. Zhang, C. Montross, P. 
Mathew, On machining of hardened AISI D2 steel with 
PCBN tools, Journal of Materials Processing 
Technology, 171, 2006, 244–252 

[9] Li Qian, M. R. Hossan, Effect on cutting force in 

turning hardened tool steels with cubic boron nitride 
inserts, Journal of Materials Processing Technology, 
191, 2007, 274–278 

[10] T. Ding, S. Zhang, Y. Wang, X. Zhu, Empirical models 
and optimal cutting parameters for cutting forces and 
surface roughness in hard milling of AISI H13 steel, 
International Journal of Advance Manufacturing and 
Technology, 2010, 51:45–55 

[11] Tug˘rul O  ̈ zel, Yig˘it Karpat, Predictive modeling of 
surface roughness and tool wear in hard turning using 

regression and neural networks, International Journal 
of Machine Tools & Manufacture, 45, 2005, 467–479 

[12] Reginaldo T. Coelho, Eu-Gene Ng, M. A. Elbestawi, 
Tool wear when turning hardened AISI 4340 with 
coated PCBN tools using finishing cutting conditions, 

International Journal of Machine Tools & 
Manufacture, 47, 2007, 263–272 

[13] D. Philip Selvaraj, P. Chandramohan, M. Mohanraj, 
Optimization of surface roughness, cutting force and 
tool wear of nitrogen alloyed duplex stainless steel in a 
dry turning  process using Taguchi method, 
Measurement, 49, 2014, 205–215 

[14] S. Sarkar, M. Sekh, S. Mitra, B. Bhattacharyya, 

Modeling and optimization of wire electrical discharge 
machining of γ-TiAl in trim cutting operation, journal 
of materials processing technology, 205, 2008, 376–
387 

[15] K. Kumar, S. Agarwal, Multi-objective parametric 
optimization on machining with wire electric discharge 
machining, International Journal of Advance 
Manufacturing and Technology, 62, 2012, 617–633 

[16] K. Kumar, A. Dvivedi, S. Kumar, Parametric 
optimisation of surface roughness on wire-EDM using 
Taguchi method, Int. J. Manufacturing Technology and 
Management, 2011, 24, 1/2/3/4. 

[17] S. Assarzadeh, M. Ghoreishi, Statistical modeling and 
optimization of the EDM parameters on WC-6%Co 
composite through a hybrid response surface 
methodology-desirability function approach, 

International Journal of Engineering Science and 
Technology, 5, 2013, 1279-1302 

 
 


